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In all problems of unsteady crack propagation which have been solved to date
{1 to 3], 1t has been assumed that the crack propagates at a constant speed.
This assumption was not prompted by physical considerations of the problem,
but by the methods of solutlon, therefore, the applicability of the results
is limited. It would be more realistic to consider the speed of crack pro-
pagation as a function of time based on explicit physical hypotheses. Unfor-
tunately, the general case of the resultant problem cannot be solved by
existing methoda. However, the problem of longitudinal shear cracks, 1l.e.
the plane problem in which the displacement 1s parallel to the crack boundary,
may be solved for an arbitrary given variation in crack propagation speed,
utilizing the method developed 1n connection with the theory of supersonic
flows [4 and 5].

Note that equilibrium problems of longitudinal shear cracks have been
studied in [6 and 7].

1. Pormulation of problem. Consider an infinite elastic body whose shear
modulus u = 1, speed of transverse wave propagation » = 1 and which occu-
ples the space outside of the crack (Fig.1l), given by

<2<l Z —ooyoo, 2z=0 (1.1)

Assume that all loads applied to the body are directed along y and are
constant along this axis. Then the dlsplacement vector will also be in the

z y direction. Let w denote the single component
z of this vector. The stress tensor has only two non-
— ] zero components
z, ,

Tey = Ow [ Oz, T, = Ow [ 0z (1.2)
All of the above quantities are not functions of
Yy . We assume further that the state of stress of the body is such that w
is an odd function of 2z . By the principle of superposition, we may sepa-
rate the terms due to an initial state of stress and the terms due to body
forces in the absence of a crack, thus reducing any arbitrary prodblem with
zero initlal conditions and specified loads along the crack
w=0, dwbt=0, for t =20 (1.3)

Fig. 1
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Tyr==—p(T, 8) for 24 <z <ws, 2=0 (1.4)
For the time being, we will study the problem under the assumption that
the crack boundary 1s specified at some instant
z, = z, (1), zy = x, (1) (1.5)
where x3(t) and x,(t) are, respectively, monotonously increasing and de-
creasing functions of time, 1i.e.

z, (1) <0, z, () >0, t >0 (1.6)
the dot denoting differentiatlon with respect to time.
The enumerated conditions must be accompanied by the equation of motion

w Bty 0Ty,
ar T ox + 0z

which 18 equivalent to the wave equation in w

0w o%w 0w
= T @.7)

In view of the assumed symmetry of the problem, it is sufficient to obtain
a solution in the half-plane =z > O only; at =z = 0 this solution is to
satisfy, in addition to (1.4), the conditions

w=0 for Z:O, ——°O<Z'<$L'], 1‘2<T<OO (1.8)

since w 1s continuous outside the crack, and is an odd function of =z .

2. Solution for t,, for z = (0. Hereinafter the subscripts for T,,
will be omitted, i.e. we will write T 1instead of 7,, .

Using the method of Volterra, we readily obtain the relation

w (IO! Ziy tO) == 1 SS T'(it, t)dx dt (T (Z’, t) = T(Z‘, 0, t)) (2.1)
S

B V (to— )2 — (wo — 2)* — 20?

valid for 2z, > 0 . Here S 1is that part of the xt plane which lies

inside the cone

(to — )2 — (2o — 22 — 22> 0, 0<CE<ty (2.2)
For xo= 0 we obtain
1 dx dt
' tg) = — [} 2.
(e fo * éo ) Vito— 1)t — (m—)? (2.3)
Here S, is the triangle
(to— 0 = (@ — 22 >0,  0<t<ty (2.4)
By virtue of (1.8) we have
dx dt
) b =0 2.5
QST(I ) V o —1F — (z0 — 2 (2-9)

for xo<ux (t) or x> xa(t) .

Let us first examine the time interval O < to< xo— X, (0) , when the dis-
turbances from the left edge of the crack have not yet reached the observation
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point, for xo>x,{(t). Clearly, from the homogeneity of the initial condi-
tions, T(x, t) = O for x>t + x,(0) . Consequently, the region of inte-
gration for this case 1s defined by

ty — t >| 2o — 2, >z — 7, (0)

The subregion defined by x < x,(t) will be denoted by S, ; the subre-
gion defined by x > x(t) will be denoted by S, . On 5, 7(x, t) is
given by (1.4). Thus

dxdt

SS T 1) V({to— 7 — (w — 2)? B §S (1) V(to—1)* — (w0 — ) (2.6)

Here the right-hand side is a known function of x, and ¢,

dxdt

Let us introduce the characteristic coordinates of the system

E=@t—2a)/V2,  n=(¢+2)/V2 (2.7)

Then (2.6) takes the form

Eo To Eo ﬂ:(E)
dE d : dE
=\ @)= —*“5 m@m)———
_x’(§)/ s VE—E mS(E) Vno—n —x2(§)/V§ Via—t J Vo

mE V=T 1), pE =P L) (2.8)

The function mn,(g) 1s a solution of Equation

s _ 17 N2+ §
nz E = ]/'2.'[2 ( VE ) (2.9)

i.e. Equation n = ny(g) defines the position of the right rdge of the crack
in terms of &£ and n .

Clearly, (2.8) will be satisfiled if
To n3(%)
\ g m 2 = 5 Py
13(E) o=
The above is in the form of Abel's 1ntegra1 equation in 1,(Z, m) . Its
solution is given by

(2.10)

'ﬁz(aﬂ) —_—
1 pl(E n) V”I2 (Eo) —
n Vi —nE) o —
The preceding expresslon holds for ne> n,(go) s 1.e. to the right of the
crack. The stress to the left of the crack may be obtained in -a simllar
manner, and is gilven by

T1(Eos Mo) = 1 dn (2.11)

1 e Ve —%
11 (Eo, —_— Y 51{Mo) — 5 212
(G0 M) = e m)_éo B mo) g e dE (242)
for &o> g€,(no) , 1.e. to the left of the crack. Here 2,(n) 1s the solution
of Equation 1E
n—E =V, (“——‘) (2.13)

In terms of physical variables, (2.,11) and (2.12) take the form
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xz("z)

1 Vo) —z ,
T(zm to) = n me p(:l:, to— 2o + x) ——xo——:x——d(t (214)
Xo~—ig
for xo> xp(to) , where ¢, is the solution of
to — xg = Ly — Z, (Ly) (2.15)

for xp<vx, (o) xi(1)
4 (

V() —x Y
SQtip

p(x, ty + 2o— ) Ve—mm) dz (2.16)

T(xnto)= pr—

where t, 1s the solution of
to -+ @ =t + 2 (8 (2.17)

Expressions (2.14) and (2.16) have been obtailned for the time intervals
0 < to< xo= x,(0) and O < t5< x,(0) — x5 , respectively. Moreover, the
intervals of integration for both expressions lle entirely on the crack sur-
face. To determine T(xo, to) for larger values of time it 1is necessary to
interchange (2.14) and (2.16), setting p(x, t) = — 17(x, t) on those por-
tions of range of integration on which the stress is unknown. Thils procedure
corresponds to repeated diffraction of the waves at the crack boundary.

3. Oocefficient of stress intensity. Expressions (2.14) and (2.16) give
infinite values for the stresses at the crack boundary. In the neighborhood
of the right edge of the crack, (2.14) ylelds the following asymptotic
expression for T(xo, to)

k
T (20, to) =~ 2

n'—wo———-—m for To—> %3 (lg) (3.1)
Here kg is the coefticlent of stress intensity at the right edge of the
crack %*3(to)
=V 1—2z(t) p(z, lo— 23 (L) + x) —mee = (3.2)
xz(to)~to ng(to) -
Similarly

SR S
7t V21 (to) — 7o

x1(fg)+1o

dr
Pz, Lo+ 23 (By) — 2) ——
xx(So) et it ) Vz— 25 (t)

If the transformation is made to a moving coordinate system with the ori-
gin at the edge of the crack and the x-axis along the crack, then the follow-
ing expression is obtained, which is valid for both the right and left edge
of the crack: t

— d ’
k=VY1I—v Sp(x', t— o)
] Vx
where x’> O on the crack, while x’< O on its extension, and v 18 the
velocity of displacement of the crack edge. For the left edge of the crack
x'=x—x(t), ve—2x"; for the right edge x'= x5(t)—x, v = x;° .

T (%0, o) = for %o —> 1 (to) (3.3)

where

k= V142 (&) (3.4)

(3.5)

With the aid of (3.5) we may carry over some of the results of static
crack theory to the dynamic case. Let po(x, t) be the distributilon of the
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coheslve forces in the neighborhood of the crack boundary. Then the coeffi-

clent of stress intensity which takes into account the cohesive forces 1s
t

F=yYi— v& (p(x',t —2x)— po(z', t — 2)] ;‘.}
0

We now require that the stresses at the crack boundary be finite (Kknrist-
ianovich-Barenblatt condition [8]). Thus, %x’= O . Defining the modulus of
cohesion t g’

K(v,t)zl/l—v\po(:c’,t—x’) v

0

given by

(3.6)

we obtain the condition

k=K (vt 3.7
where % 18 the coefficient of stress intensity obtained without regard to
the coehesive forces.

Let the length of the crack boundary zone equal £ . Generally, we can
consider £ to be very small in comparison with any characteristic dimension
of the problem. Consider the case t>» £ . Then (3.6) may be simplified by
neglecting x’ in comparison with ¢ , yielding

1

K(v,t)zgpo(x’, t) ]‘Z_ Vi—v (3.8)

Now assume that the distribution of cohesive forces at the boundary of
the propagating crack depends only on the speed of crack propagation, and is
not an explicit function of time. This assumption is a natural generaliza-
tion of Barenblatt's hypothesis on the independent character of the crack
boundary zone. In that case, the modulus of coheslon will only be a function
of v , and be given by

i
K@) =\p@, - VT=v (3.9)

Vo

4, Energetio condition. The cohesive forces infuence the stress distri-
bution in the body only at a distance of order ¢ from the crack boundary.
Thus, for small £ , the boundary zone may be taken as a point, and the cohe-
sive forces may be disregarded. Then, of course, the condition that the
stresses be finite cannot be fulfilled, but another condition may be obtained,
defining the coefficient of stress intensity. Namely, we can assume that the
work done in the rupture process (in overcoming the cohesive forces) depends
only on the speed of crack propagation, 1.e. for a given material, it may be
expressed as a function of the speed of propagation

P=P @ (4.1)
Consider the energy integral obtained from the equation of motion; this
can be related to the coefficient cf stress intensity by

P=at{l— vy "k (4.2)
where % 1s given by (3.2) or (3.4). Relation (4.2) may be rewritten as

k=K@)=VaP@) Y1I—o* (4.3)
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As v - 0, this condition becomes Griffith's condition for a static longi-
tudinal shear crack.

The function (4.1) has to be determined either experimentally or theoreti-
cally from some physical assumptions regarding the rupture mechanism. For
example, if we assume that in the progress of crack formation no plastic
deformation takes place, and all work is spent in increasing the surface

energy, then K=Vl yT—o (4.4)
where T 18 the surface tenslon, which 1s a material constant. Experiment-

ally, it i1s convenient to determine the coefficlent of stress intensity, or

in the final analysis, the cohesion modulus X(v) , rather than the function
in (4.1).

Now 1t is no longer necessary to consider x,(t) and x.(¢t) as known func-
tions of time. Substituting (3.2) and (3.4) into (3.7), we obtain a differ-
ential equation for the determination of the locations of the crack ends at
any time; for example

% :
S plz, t —zy+ ) v K@) s (4.5)
xy—t Va—z Vi—g

5. Examples. The investigation of problems for cracks of findte length
can only be conducted numerically, since the multiple integrals in connection
with the repreated wave diffractions cannot be obtained in closed form even
in the simplest cases, Therefore, the examples considered below are for a
semi~infinite crack only. Actually, the results obtained in the case of a
semi-infinite crack are also applicable to finite cracks at such times that
the disturbances from one end of the crack have not yet reached the other end.

a) Consider the case of an elastic continuum which is initlally under a
homogeneous state of stress such that 1, =1 ; at ¢t = 0, an instantane-
ous semi-infinite crack develops along tﬂé negative x-axis. In that case
P = 17, and is independent of x and ¢ .

Substitution of the above value into (3.2) yields the coefficlent of
stress intensity _ _
k=2Vi—ztwV: (5.1)

where x(t) is the coordinate of the crack end at time ¢ . So long as the
magnitude of the stress intensity coefficient has not reached the value of
the static cohesion modulus, the crack remains stationary, i.e.

z=0 ftor t<°= [K (O)]2/ 41y? (5.2)

Crack propagation starts at time ¢ = ¢°, and x must then be equal to
the cohesion modulus x{(x°*) , i.e.

K@) A —z)" =21Vt (5.3)
This differential equation determines x(¢) . If X(x') is bounded, then

r—1 for t— o0

i.e. the veloclty of crack propagation approaches, with time, the transverse
wave velocity of the medium, and the crack propagation never stops. This is
only natural, since there exists no solution for a semi-infinite equilibrium

erack in a homogeneous stress field.

b) As a second example, conslder a seml-infinite crack with a concen-
trated load p = P°8(x + x°) applied at time ¢ = O at the point x = — x°.
In this case, (3.2) ylelds

]/1 —x

ko= ————H (1—2")p°

Vot o

—_
[
=~

~—
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where H(t) is the Heavislde function. This expression is zero for ¢ < x°
i.e. so long as the disturbance has not yet reached the crack end. Thus,
the crack does not propagate, and

z=10 tor 1 ° (3.5)

z At the time ¢ = x°, the magnlitude
k=P YToT < 2= (5.6)

Ve Ve

If this quantity is less than the static cohe-~
sion modulus, the crack will not begin to propa-
gate at all, since it 1s clear from (5.4) that *
can only decrease in the course of crack propaga~
tion. Hence, crack propagation will take place
only under conditions

po
—=>K{0)
Fig. 2 Ve
In that case, equating the expression in (5.4) to the dynamic cohesion
modulus, we obtain a differential equation for x(¢

K(x‘)%—x—iﬁ.= r°

i —=x

(5.7

Again, assuming X(x') to be bounded we conclude that the crack will only
propagate as long as 1ts boundary has not reached the point

Zy = [p° /K ()2 — z° {5.8)
after which crack propagation will cease.

In both of the investigated problems, more detalled information may be
obtained with regard to crack propagation if some definite form is assumed
for X(v) , and Equations (5.3? and (5.7) are integrated. For definiteness,
assume that the energy of rupture is constant, 1.e. we will consider a purely
brittle fracture with no plastic deformation. In this case, the cohesion
modulus 1s given by (4.4). Substituting this expression into (5.3) and (5.7)
we obtain the governing equation of motion for the crack

for example (a)

Z n 4

z x=t+<~2—-—1—2 tan~* -iT)t"
and for example {b)

T, (2, + 20° — 7)

L= NG e, )

The character of the corresponding curves
is shown in Figs.2 and 3.

The formulas obtained herein, in principle

¢ enable one to study the propagation of longi-
Z tudinal shear cracks under arbitrary loading
- and over arbitrary time intervals, provided
Fig. 3 that the functional relationship between the

coheslon modulus and the speed of crack pro-

pagation is known. The only limitation is
that the initial crack length must be finite and large in comparison with
the boundary region in order that the idea of cohesion modulus be meaning-
ful. Investigation of the initial perlod of the crack propagation before
interaction between the boundaries occurs, is particularly simple. After-
wards, analysis becomes increasingly complex as time increases, and can be
carried out only by numerical methods.
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